MATH 150 (Calculus I) Suggested Problems

Textbook: CALCULUS – Single Variable Calculus Early Transcendentals, 9th edition, by James Stewart

Section	Exercise	Suggested problems	
Appendix (REVIEW)			
A. Numbers, Inequalities and Absolute Values	Ex. A	13-55 (odd), 61	
B. Coordinate Geometry and Lines	Ex. B	4-16 (even), 22-42 (even),	
		53, 57, 58	
D. Trigonometry	Ex. D	1-11 (odd), 29-34 (odd), 65-	
		72 (odd)	
CHAPTER 1 (FUNCTIONS AND MODELS)			
1.1 Four Ways to Represent a Function	Ex. 1.1	4, 24, 25, 27, 29, 35, 43, 51,	
		58, 60, 74	
1.2 Mathematical models: A Catalog of	Ex. 1.2	6, 14, 20, 21-22, 25	
Essential Functions			
1.3 New Functions from Old Functions	Ex. 1.3	4,7,17,18, 35, 38, 39, 48, 63	
1.4 Exponential Functions	Ex. 1.4	2, 3, 13, 16, 17, 19, 30, 31	
1.5 Inverse Functions and Logarithms	Ex. 1.5	18, 26, 45, 53, 58, 66	
CHAPTER 2 (LIMITS AND DERIVATIVES)			
2.1 The Tangent and Velocity Problems	Ex. 2.1	odds 1-9	
2.2 The Limit of a Function	Ex. 2.2	7, 18,19,25,27,34,41,54	
2.3 Calculating Limits Using the Limit Laws	Ex. 2.3	2,11,15,18,21,30,36, 38,52	
2.5 Continuity	Ex. 2.5	4,12,20,21,30,38,43,44,56	
2.6 Limits at Infinity: Horizontal Asymptotes	Ex. 2.6	3,6,21,25,27,34,48,50,65	
[No precise definitions]			
2.7 Derivatives and Rates of Changes	Ex. 2.7	10,12,14,16,20,27,31,35,38	
2.8 The Derivative as a Function	Ex. 2.8	1,26,44,51,56,58	
CHAPTER 3 (DIFFERENTIATION RULES)			
3.1 Derivatives of Polynomials and	Ex. 3.1	11,15,31,32,34,46,49,51, 60,	
Exponential Functions		62	
3.2 The product and Quotient Rules	Ex. 3.2	3,8,11,23,24,28,38,45,52, 54,	
		56	
3.3 Derivatives of Trigonometric Functions	Ex. 3.3	5,6,16,22,31,34,36,38, 44, 47	
3.4 The Chain Rule	Ex. 3.4	10, 27-43 odd, 47, 53,	
		60,62,80,86	
3.5 Implicit Differentiation	Ex. 3.5	8,12,17,18,25,28,39,44,53,57	
		,75	
3.6 Derivatives of Logarithmic Functions	Ex. 3.6	13,17,21,42,48,49,52	
3.7 Rates of Change of the Natural and Social	Ex. 3.7	1,6,9,14,16,18	
Sciences			
3.8 Exponential Growth and Decay	Ex. 3.8	3,4,8,12	

3.9 Related Rates	Ex. 3.9	3,5,7,13,15,16,22,30,33	
3.10 Linear Approximations and Differentials	Ex. 3.10	8,17,20,25,27,33,34,35	
CHAPTER 4 (APPLICATIONS OF DIFFERENTIATION)			
4.1 Maximum and Minimum Values	Ex. 4.1	6,7,31,35,42,43,50,56,57,60,	
		69,72	
4.2 The Mean Value Theorem	Ex. 4.2	6,9,16,17,25	
4.3 How Derivatives Affect the Shape of a	Ex. 4.3	10,12,16,20,23,28,31,32,35,8	
Graph		0	
4.4 Indeterminate Forms and L'Hospital Rule	Ex. 4.4	13,22,27,43,44,51,57,58,79,9	
		0	
4.5 Summary of Curve Sketching	Ex. 4.5	4,10,21,34,44,49,58	
4.7 Optimization Problems	Ex. 4.7	4,5,8,14,22,35, 37,56	
4.9 Antiderivatives	Ex. 4.9	1-21 odd, 36, 40, 45, 69,	
		77	
CHAPTER 5 (INTEGRALS)			
5.1 Areas and Distances	Ex. 5.1	2,6,15,21,24,26	
5.2 The Definite Integral	Ex. 5.2	3,17,21,22,29, 33, 36,	
		38,39, 48, 49	
5.3 Fundamental Theorem of Calculus	Ex. 5.3	2, 7,12, 13, 20, 25, 30, 34,	
		40,45,47	